「積分の関係式」の裏話のもっと昔の話


私が高校3年(昭和50年/1975年秋)のとき、受験で数学を勉強していて、二次関数の回転体の体積を求める問題にめぐりあいました。私は計算方法を忘れてしまい、即興で

と変換し、問題を解きました。解いた体積は解答と一致しました。ところで、解いた後、疑問がわき上がりました。
本来はを逆関数に変換し、逆関数をで積分し問題を解くべきで、という公式はないので解けないはず、同じ結果は出ないはず、と思いました。
また、は置換積分に似ています。学校で習う置換積分は、たとえば新しい変数(新しい座標)を作るものですが、今回は座標を限定した中で置換積分するのですから、できるかどうか不思議でした。
数日後、置換積分できるかどうかわからないから、部分積分で証明してみようと思いました。その式が

です。
もう少し簡単にします。

よく見たら、右辺を図で解釈したらそれで十分な証明になりました。
新しい式・証明・計算例をすぐに高校の先生に見せて、数日後OKをもらいましたが、一言「試験ではこの式を使わないこと」が付け加えられました。
実はこの発見があって、大学の志望を数学科にしました。

「こだわりハウス」写真館| 数学公式集| ピンポイントストリートビュー| FaceBook|